LIBERTY PAPER SET							
STD. 10 : Mathematics (Standard) [N-012(E)]							
Full Solution							
Tim	e: 3 Hours ASSIGNTMENT PAPER 9						
	Section-A						
(
	1. (B) 510 and 85 2. (C) $\frac{-c}{d}$ 3. (D) 13.5 4. (C) Zero 5. (C) 400 6. (C) 8.4 7. 3 : 2 8. 0.48 9. 3 10. 6 11. 31						
	12. 25 13. False 14. False 15. True 16. True 17. 72.8% 18. M = 16 19. 1 : <i>abc</i> 20. $k = 1$ 21. (b) - 3 and - 2						
	22. (a) - 6 and 1 23. (b) $\sqrt{1}$ 24. (a) - 1						
l		J					
	Section-B						
25.	2 336 2 54						
	2 168 3 27						
	$\frac{2}{2}$ $\frac{42}{21}$ $\frac{3}{3}$ $\frac{3}{3}$						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
	$336 = 2^4 \times 3 \times 7$						
	$54 = 2 \times 3^3$						
	: HCF (336, 54) = $2 \times 3 = 6$						
	:. LCM (336, 54) = $2^4 \times 3^3 \times 7 = 3024$						
	HCF (336, 54) × LCM (336, 54) = $6 \times 3024 = 18144$						
	Product of the two numbers = 336×54						
	= 18144						
	:. HCF (336, 54) × LCM (336, 54) = 336 × 54						
26.	By the method of elimination :						
	3x - 5y - 4 = 0	(1)					
	9x = 2y + 7						
	$\therefore 9x - 2y - 7 = 0$	(2)					
	Multiply equation (1) by 2 and equation (2) by 5 and subtract 6x - 10y - 8 = 0						
	45x - 10y - 35 = 0						
	_ + +						
	$\therefore -39x + 27 = 0$						
	$\therefore - 39x = -27$						
	$\therefore x = \frac{27}{39} = \frac{9}{13}$						

Put
$$x = \frac{9}{13}$$
 in equation (1)
 $3x - 5y - 4 = 0$
 $\therefore 3\left(\frac{9}{13}\right) - 5y - 4 = 0$
 $\therefore \frac{27}{13} - 5y - 4 = 0$
 $\therefore \frac{27}{13} - 4 = 5y$
 $\therefore 65y = 27 - 52$
 $\therefore 65y = -25$
 $\therefore y = -\frac{5}{13}$

The solution of the equation : $x = \frac{9}{13}$, $y = -\frac{5}{13}$

27. Lets, the present age of Virat be *x* years.

7 years ago, the age of Virat was (x - 7) years and 7 years later the age of Virat will be (x + 7) years.

According to the condition,

$$(x - 7) (x + 7) = 480$$

$$\therefore x^{2} - 49 = 480$$

$$\therefore x^{2} - 49 - 480 = 0$$

$$\therefore (x + 23) (x - 23) = 0$$

$$\therefore x^{2} - 529 = 0$$

$$\therefore x + 23 = 0 \qquad \text{OR} \qquad x - 23 = 0$$

$$\therefore x = -23 \qquad \text{OR} \qquad x = 23$$

but x is the age of Virat, so negative is not possible.

 $\therefore x \neq -23$

$$\therefore x = 23$$
 years

 \therefore The present age of virat = 23 years

28. Here
$$(k + 1) x^2 - 2 (k - 1) x + 1 = 0$$

then compare with $ax^2 + bx + c = 0$

$$a = k + 1, b = -2 (k - 1), c = 1$$

the quadratic equation has equal roots so Discriminat.

$$\therefore b^{2} - 4ac = 0$$

$$\therefore [-2 (k - 1]^{2} - 4 (k + 1) (1) = 0$$

$$\therefore 4 (k - 1)^{2} - 4 (k + 1) = 0$$

$$\therefore (k - 1)^{2} - (k + 1) = 0$$

$$\therefore k^{2} - 2k + 1 - k - 1 = 0$$

$$\therefore k^{2} - 3k = 0$$

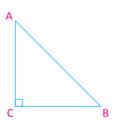
$$\therefore k (k - 3) = 0$$

$$\therefore k = 0 \qquad \text{OR} \quad k - 3 = 0$$

$$\therefore k = 0 \qquad \text{OR} \quad k = 3$$

Hence, $k = 0 \qquad \text{OR} \quad k = 3$

29. $a_{12} = 37, d = 3, a =$ ____, $S_{12} =$ _____ Now, $a_{12} = 37$ $\therefore a + 11d = 37$ $\therefore a + 11(3) = 37$ $\therefore a + 33 = 37$ $\therefore a = 37 - 33$ $\therefore a = 4$ $S_n = \frac{n}{2} [2a + (n-1)d]$ \therefore S₁₂ = $\frac{12}{2}$ [2(4) + (12 - 1)(3)] = 6 [8 + 33] $= 6 \times 41$ \therefore S₁₂ = 246 **30.** $sin A = \frac{3}{4}$ In right angled \triangle ABC, \angle B = 90° $\sin A = \frac{BC}{AC} = \frac{3}{4}$ $\therefore \frac{BC}{3} = \frac{AC}{4}$ k, k = Positive Real Number \therefore BC = 3k, AC = 4k According to pythagoras $AB^2 = AC^2 - BC^2$:. $AB^2 = (4k)^2 - (3k)^2$ $\therefore AB^2 = 16k^2 - 9k^2$ $\therefore AB^2 = 7k^2$ $\therefore AB^2 = \sqrt{7} k^2$ $\therefore \quad \cos A = \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$ $\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}}$ **31.** LHS = $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1}$ $= \frac{tan\theta - 1 + sec\theta}{tan\theta + 1 - sec\theta}$ (:: Divide each term by $cos\theta$) $= \frac{(\tan\theta + \sec\theta) - 1}{(\tan\theta - \sec\theta) + 1} \times \frac{\tan\theta - \sec\theta}{\tan\theta - \sec\theta}$ $=\frac{(tan^{2}\theta - sec^{2}\theta) - (tan\theta - sec\theta)}{\{(tan\theta - sec\theta) + 1\}(tan\theta - sec\theta)\}}$ $= \frac{-1 - tan \,\theta + sec \,\theta}{(tan \,\theta - sec \,\theta + 1)(tan \,\theta - sec \,\theta)}$ $= \frac{-(1 + tan \theta - sec \theta)}{-(tan \theta - sec \theta + 1)(sec \theta - tan \theta)}$ $=\frac{1}{sec\theta - tan\theta} = RHS$



32. A circle touches all the sides of \square ABCD. So the sum of opposite sides of \square ABCD is equal.

 $\therefore AB + CD = AD + BC$

 $\therefore 6 + 8 = AD + 9$

- \therefore 14 9 = AD
- \therefore AD = 5 cm
- **33.** Hemisphere Cone
 - r = 1 cm r = 1 cm

$$h = r = 1 \text{ cm}$$

Volume of solid = Volume of hemisphere + Volume of cone

$$= \frac{2}{3}\pi r^{3} + \frac{1}{3}\pi r^{2}h$$

= $\frac{1}{3}\pi r^{2} (2r + h)$
= $\frac{1}{3} \times \pi \times (1)^{2} \times [(2 \times 1) + 1]$
= $\frac{1}{3} \times \pi \times 1(2 + 1)$
= $\frac{1}{3} \times \pi \times 3$
= $\pi \text{ cm}^{3}$

Hence, the volume of the solid is π cm³.

34. We have,

Mode Z =
$$l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$$

= $40 + \left[\frac{7 - 3}{2(7) - 3 - 6}\right] \times 15$
= $40 + \left[\frac{4}{14 - 9}\right] \times 15$
= $40 + \left(\frac{4}{5}\right) \times 15$
= $40 + \left(\frac{4 \times 5 \times 3}{5}\right)$
= $40 + (4 \times 3)$
= $40 + 12$
Z = 52

35. Here mean $\overline{x} = 52$

Life time (in hours)	Frequency (f_i)	<i>x</i> _i	u _i	$f_i u_i$
10 - 20	5	15	-3	-15
20 - 30	3	25	-2	-6
30 - 40	4	35	-1	-4
40 - 50	f	45 – (equal)	0	0
50 - 60	2	55	1	2
60 - 70	6	65	2	12
70 - 80	13	75	3	39
	$\Sigma f_i = f + 33$		-	$\Sigma f_i u_i = -25 + 53 = 28$

a = 45, h = 10Mean $\overline{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$ $\therefore \quad 52 = 45 + \frac{28}{f + 33} \times 10$ $\therefore \quad 52 - 45 = \frac{28 \times 10}{f + 33}$ $\therefore \quad 7 = \frac{28 \times 10}{f + 33}$ $\therefore \quad f + 33 = \frac{4}{7}$ $\therefore \quad f + 33 = 40$ $\therefore \quad f + 40 - 33$ $\therefore \quad f = 7$

Hence, the missing frequency f = 7

- **36.** Total number of pen = 12 + 132 = 144
 - (i) Suppose A be the event "The selected pen is defective"

Number of defective pen = 12

 \therefore The number of outcomes favourable to A = 12

:. P (A) =
$$\frac{12}{144} = \frac{1}{12}$$

(ii) Suppose B be the event "The selected pen is good"

Number of good pen = 132

 \therefore The number of outcomes favourable to B = 132

$$\therefore$$
 P (B) = $\frac{132}{144} = \frac{11}{12}$

37. A box contains 100 card boards labelled 1 to 100.

Total number of card boards = 100

(i) Suppose A be the event one digit number on the selected board.

There are 9 one digit number 1, 2, 3, 4, 5, 6, 7, 8, 9 in 1 to 100.

The number of outcomes favourable to A = 9.

:. P (A) =
$$\frac{9}{100} = 0.09$$

(ii) Suppose B be the event two digit number on the selected board.

There are 90 two digit number 10, 11, 12, 99 in 1 to 100.

The number of outcomes favourable to B = 90.

$$\therefore$$
 P (B) = $\frac{90}{100} = \frac{9}{10} = 0.09$

Section	-C
30000	U

38. $3x^2 - x - 4 = 0$ $\therefore 3x^2 - 4x + 3x - 4 = 0$ $\therefore x (3x - 4) + 1 (3x - 4) = 0$ $\therefore (3x - 4) (x + 1) = 0$ $\therefore 3x - 4 = 0$ and x + 1 = 0 $\therefore x = \frac{4}{3}$ and x = -1Sum of the zeroes = $\frac{4}{3} - 1 = \frac{4-3}{3} = \frac{1}{3} = -\frac{-1}{3} = -\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$ Product of the zeroes = $\left(\frac{4}{3}\right)(-1) = \frac{-4}{3} = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$ 39. Let P (x) = $ax^2 + 11x + 12$ then compare with P (x) = $ax^2 + bx + c$ \therefore a = 9, b = 11, c = 12 Product of zeros $(\alpha \cdot \beta) = 6$ $\therefore \frac{c}{a} = 6$ $\therefore \frac{12}{a} = 6$ $\therefore \frac{12}{6} = a$ $\therefore a = 2$ and sum of zeros $(\alpha + \beta) = \frac{-b}{a}$ $\therefore (\alpha + \beta) = \frac{-11}{2}$ Hence, a = 2, $\alpha + \beta = \frac{-11}{2}$ **40.** Here, $S_n = 4n - n^2$ $S_1 = 4(1) - (1)^2 = 4 - 1 = 3$ *.*.. $S_2 = 4(2) - (2)^2 = 8 - 4 = 4$ Now, the first term = $a = a_1 = S_1 = 3$ The sum of first two terms = $S_2 = 4$:. Second term = $a_2 = S_2 - S_1 = 4 - 3 = 1$: Hence a = 3, $S_2 = 4$, $a_2 = 1$ 41. Since the production increases uniformly by a fixed number every year, the number of TV sets manufactured in 1st, 2nd, 3rd, ..., years will form an AP. Suppose, denote the number TV sets manufactured in the n^{th} year by a_n Here, $a_3 = 600$ i.e. a + 2d = 600 $a_7 = 700$ i.e. a + 6d = 700Subtract equation (2) by (1), (a+2d) - (a+6d) = 600 - 700 $\therefore a + 2d - a - 6d = -100$

...(1)

...(2)

$$\therefore -4d = -100$$

$$\therefore d = 25$$

Put d = 25 in equation (1)

$$a + 2d = 600$$

$$\therefore a + 2(25) = 600$$

$$\therefore a + 50 = 600$$

$$\therefore a = 550$$

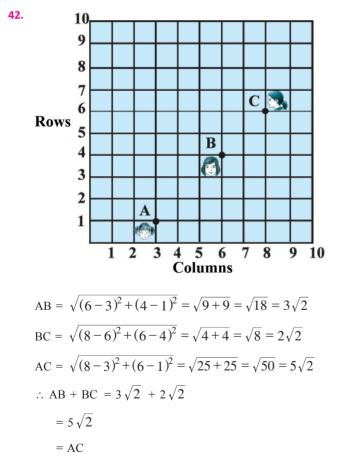
- (i) Production of TV sets in the first year is 550.
- (ii) Now, $a_{10} = a + 9d = 550 + 9(25) = 550 + 225 = 775$

So, production of TV sets in the 10th year is 775.

(iii) Now,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

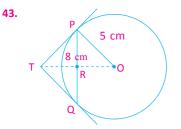
 $\therefore S_7 = \frac{7}{2} [2(550) + (7-1)25]$
 $\therefore S_7 = \frac{7}{2} (1100 + 150)$
 $\therefore S_7 = \frac{7}{2} \times 1250$
 $\therefore S_7 = 4375$

Thus, The total Production of TV sets in first 7 years is 4375.



 \therefore We can say that the points A, B and C are collinear.

Therefore, they are seated in a line.



Join OT. Let it intersect PQ at the point R.

Then Δ TPQ is isoscele and TO is the angle bisector of \angle PTQ.

So, $\mathrm{OT} \perp \mathrm{PQ}$ and

Therefore, OT bisects PQ which gives

PR = RQ = 4 cm

In Δ PRO right angle,

OR = $\sqrt{OP^2 - PR^2} = \sqrt{(5)^2 - (4)^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \text{ cm}$ In Δ TPR, \angle TPR + \angle PTR = \angle PRT = 90° Now, \angle TPR + \angle RPO = 90° = \angle TPR + \angle PTR $\therefore \angle$ RPO = \angle PTR In Δ TRP and Δ PRO, \angle PTR = \angle RPO \angle TRP = \angle PRO (Right angle) $\therefore \Delta$ TRP ~ Δ PRO (AA criterion) $\therefore \frac{TP}{PO} = \frac{RP}{RO}$ $\therefore \frac{TP}{5} = \frac{4}{3}$ \therefore TP = $\frac{20}{3}$ cm

44. Given : A circle with centre O, a point P lying outside the circle with two tangents PQ, QR on the circle from P. To prove : PQ = PR

Figure :



Proof : Join OP, OQ and OR. Then \angle OQP and \angle ORP are right angles because these are angles between the radii and tangents and according to theorem 10.1 they are right angles.

Now, in right triangles OQP and ORP,

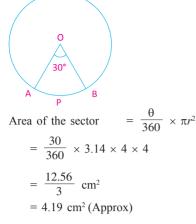
OQ = OR (Radii of the same circle)

OP = OP (Common)

 $\angle OQP = \angle ORP$ (Right angle)

Therefore, $\triangle \text{ OQP} \cong \triangle \text{ ORP}$ (RHS)

This gives, PQ = PR (CPCT)



45.

Area of the corresponding major sector

- $= \pi r^2$ Area of sector OAPB
- $= (3.14 \times 4 \times 4) 4.19$
- = 50.24 4.19

 $= 46.05 = 46.1 \text{ cm}^2 \text{ (Approx)}$

46. Two dice are thrown same time, then the result are following :

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

- (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
- (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
- (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
- (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
- (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
- \therefore Total number of outcomes = 36
- (i) Suppose A be the event "the sum of the digits on the dice is 7"

There are 6 results (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) and (6, 1) for the event.

Section-D

 \therefore The number of outcomes favourable to A = 6

:. P (A) =
$$\frac{6}{36} = \frac{1}{6}$$

(ii) Suppose B be the event "the sum of the digits on the dice is 11"

There are 2 results (5, 6) and (6, 5) for the event.

 \therefore The number of outcomes favourable to B = 2

:. P (B) =
$$\frac{2}{36} = \frac{1}{18}$$

47. Suppose, the ten's and the unit's digits in the first number be *x* and *y*. respectively

The first number = 10x + y

Now, when the digits are reversed, x become the ten's digit.

The second Number = 10y + x

According to the first condition,

$$(10x + y) + (10y + x) = 66$$

 $\therefore 10x + y + 10y + x = 66$
 $\therefore 11x + 11y = 66$
 $\therefore x + y = 6$...(1)

(10

According to the second condition,

x - y = 2 OR ...(2)

 $y - x = 2 \qquad \dots (3)$

Then adding equation (1) and equation (2)

x + y + x - y = 6 + 2 $\therefore 2x = 8$ $\therefore x = 4$

Put x = 4 in equation (1)

x + y = 6 $\therefore 4 + y = 6$ $\therefore y = 2$

Now, we get x = 4 and y = 2, the number is 42.

Same as the solving equation (1) and (3) we get x = 2 and y = 4 we get the number 24.

```
Thus there are two such Numbers 42 and 24.
```

48. Suppose, the cost of a one bat is $\overline{\mathbf{x}}$ the cost of a one ball is $\overline{\mathbf{x}}$ y.

According to the first condition,

$$7x + 6y = 3800 ...(1)$$

∴ $y = \frac{3800 - 7x}{6}$...(2)

According to the second condition,

$$3x + 5y = 1750$$
 ...(3)

Put value of equation (2) in equation (3),

$$3x + 5y = 1750$$

$$\therefore 3x + 5\left(\frac{3800 - 7x}{6}\right) = 1750$$

$$\therefore 3x + \frac{19000 - 35x}{6} = 1750$$

$$\therefore 18x + 19000 - 35x = 10500$$

$$\therefore 18x - 35x = 10500 - 19000$$

$$\therefore - 17x = -8500$$

$$\therefore x = 500$$

Put x = 500 in equation (2)

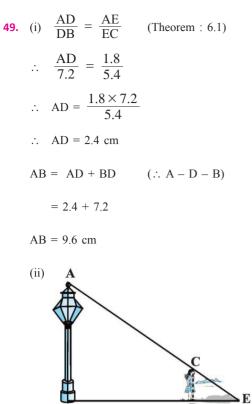
$$y = \frac{3800 - 7x}{6}$$

$$\therefore y = \frac{3800 - 7(500)}{6}$$

$$\therefore y = \frac{3800 - 3500}{6} = \frac{300}{6} = 50$$

$$\therefore y = 50$$

Therefore, the cost of one bat is ₹ 500 and the cost of a one balls is ₹ 50



Let AB denote the lamp-post, and CD the girl after walking for 4 seconds away from the lamp-post (see Fig.).

From the figure, you can see that DE is the shadow of the girl. Let DE be x metres.

Now, Distance = Speed \times Time

 \therefore BD = 1.2 × 4

B

∴ BD = 4.8 m

In Δ ABE and Δ CDE

- $\angle B = \angle D$ (Each is of 90°)
- $\therefore \angle E = \angle E$ (Same angle)
- $\therefore \Delta ABE \sim \Delta CDE$ (AA similarity criterion)

$$\therefore \frac{BE}{DE} = \frac{AB}{CD}$$

$$\therefore \frac{BD + DE}{DE} = \frac{AB}{CD}$$

$$\therefore \frac{4.8 + x}{x} = \frac{3.6}{0.9} (\therefore 90 \text{ cm} = 0.9 \text{ m})$$

$$\therefore 4.8 + x = 4x$$

$$\therefore 3x = 4.8$$

$$\therefore x = 1.6$$

So, the shadow of the girl after walking for 4 seconds is 1.6 m long.

50. Fill in the blank given in the proof of the question below. If $OA \cdot OB = OC \cdot OD$ in the given figure, prove that $\angle A = \angle C$ and $\angle B = \angle D$

Given = $OA \cdot OB = OC \cdot OD$ Proof: $OA \ OB = OC \ OD$ (Given)

C

В

To Prove:
$$\angle A = \angle C$$
 and $\angle B = \angle D$

..... (1)

...... (2)

 $\therefore \frac{OA}{OC} = \frac{OD}{OB}$ (:: Vertically opposite angles)

Hence from (1) and (2),

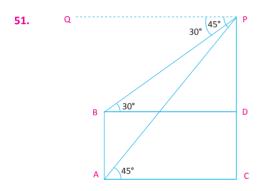
 $\Delta \text{ AOD} \sim \Delta \text{ <u>COB</u>}$

C

(::<u>SAS</u> symmetry)

 $\therefore \angle A = \angle C$ and $\angle D = \angle B$

(:: Corresponding angles of an isomer)



In Fig., PC denotes the multistoreyed building and AB denotes the 8 m tall building.

The height of the multistoreyed building = PC and distance between the two building = AC PB is a trasversal to the parallel lines PQ and BD.

 $\therefore \angle QPB = \angle PBD = 30^{\circ} \text{ and } \angle QPA = \angle PAC = 45^{\circ}$

In right Δ PBD,

$$\therefore tan 30^{\circ} = \frac{PD}{BD}$$
$$\therefore \frac{1}{\sqrt{3}} = \frac{PD}{BD}$$
$$\therefore BD = \sqrt{3} PD$$

In right Δ PAC,

$$\therefore tan 45^{\circ} = \frac{PC}{AC}$$
$$\therefore 1 = \frac{PC}{AC}$$
$$\therefore PC = AC$$
$$, PC = PD + DC$$

 \therefore PD + DC = AC

But

Here, AC = BD and DC = AB = 8 m

$$\therefore PD + 8 = BD$$

$$\therefore PD + 8 = \sqrt{3} PD$$

$$(\because BD = \sqrt{3} PD)$$

$$\therefore \sqrt{3} PD - PD = 8$$

$$\therefore PD (\sqrt{3} - 1) = 8$$

$$\therefore PD = \frac{8}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

$$\therefore PD = \frac{8(\sqrt{3} + 1)}{(\sqrt{3})^2 - (1)^2} = \frac{8(\sqrt{3} + 1)}{3 - 1} = \frac{8(\sqrt{3} + 1)}{2}$$

$$\therefore PD = 4 (\sqrt{3} + 1) m$$

So, the height of the multistoreyed building

:. PC = PD + DC
= 4 (
$$\sqrt{3}$$
 + 1) + 8
= 4 ($\sqrt{3}$ + 1 + 2)
= 4 (3 + $\sqrt{3}$) m

and the distance between the two building

r r

$$\therefore AC = PD + DC$$

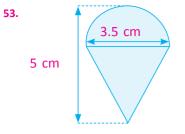
$$= 4 (3 + \sqrt{3}) m$$
52. Cylinder
 $r = 0.7 \text{ cm}$
 $r = 0.7 \text{ cm}$
 $r = 0.7 \text{ cm}$

$$\therefore r = \frac{1.4}{2} = 0.7 \text{ cm}$$
 $l = 2.5 \text{ cm}$
 $l = \sqrt{r^2 + h^2}$
 $\therefore l = \sqrt{(0.7)^2 + (2.4)^2}$
 $\therefore l = \sqrt{0.49 + 5.76}$
 $\therefore l = \sqrt{6.25}$
 $\therefore l = 2.5 \text{ cm}$

The total surface area of the remaining solid will be

= CSA of cylinder + CSA of cone + Area of cylindrical base $= 2\pi rh + \pi rl + \pi r^2$ $=\pi r \ (2h+r+l)$ $= \frac{22}{7} \times 0.7 \times (2 \times 2.4 + 0.7 + 2.5)$ $= 2.2 \times (4.8 + 0.7 + 2.5)$ $= 2.2 \times 8$ $= 17.6 \text{ cm}^2$ = 18 cm^2 (Approx)

Hence, it is clear that the total surfce area of the remaining solid to the nearest cm.² is 18 cm².



Diameter of hemisphere = 3.5 cm

$$\therefore r = \frac{3.5}{2} = 1.75 \text{ cm}$$

Radius of cone = A radius of hemisphere = r = 1.75 cm

Height of cone h = Total height of top – Radius of hemisphere

$$\therefore h = 5 - 1.75 = 3.25 \text{ cm}$$

$$l = \sqrt{r^2 + h^2}$$

$$\therefore l = \sqrt{(1.75)^2 + (3.25)^2}$$

$$= \sqrt{3.0625 + 10.5625}$$

$$\therefore l = \sqrt{13.625}$$

: l = 3.69 cm

 \therefore TSA of the top = CSA of a hemisphere + CSA of a cone

$$= 2\pi r^{2} + \pi r l$$

$$= \pi r (2r + l)$$

$$= \frac{22}{7} \times 1.75 \times [2(1.75) + 3.69]$$

$$= 22 \times 0.25 \times (3.5 + 3.69)$$

$$= 22 \times 0.25 \times 7.19$$

$$= 39.545$$

$$= 39.6 \text{ cm}^{2}$$

Thus, the total surface area of the whole part of the top colouring is 39.6 cm².

54.	Age (in years)	f_i	cf
	15 - 20	2	2
	20 - 25	4	6
	25 - 30	18	24
	30 - 35	21	45
	35 - 40	33	78
	40 - 45	11	89
	45 - 50	3	92
	50 - 55	6	98
	55 - 60	2	100
	Total	<i>n</i> = 100	_

Here, n = 100

$$\therefore \quad \frac{n}{2} = \frac{100}{2} = 50$$

The cumulative version 78 immediately after 50 is included in the observation class 35-40 so median class is 35-45. Now, l = lower limit of median class= 35

$$\frac{n}{2} = 50$$

$$cf = \text{cumulative frequency of class preceding the median class} = 45$$

$$f = \text{frequency of median class} = 33$$

$$h = \text{class size} = 5$$
Median M = $l + \left(\frac{n}{2} - cf}{f}\right) \times h$

$$\therefore M = 35 + \left(\frac{50 - 45}{33}\right) \times 5$$

$$\therefore M = 35 + \frac{5 \times 5}{33}$$

$$\therefore M = 35 + 0.76$$

So, median are is 35.76 years.